Air permeability is defined as the volume of air in millilitres which is passed in one second through 10Os mm2 of the fabric at a pressure difference of 10mm head of water.The specimen is clamped over the air inlet of the apparatus with the use of rubber gaskets and air is sucked through it by means of a pump as shown in Fig.A. The air valve is adjusted to give a pressure drop across the fabric of 10mm head of water and the air flow is then measured using a flow meter.
Five specimens are used each with a test area of 508mm2 (25.4mm diameter) and the mean air flow in ml per second is calculated from the five results. From this the air permeability can be calculated in ml per 100mm2 per second.
The reciprocal of air permeability, air resistance, can be defined as the time in seconds for ImI of air to pass through 100s mm2 of fabric under a pressure head of 10mm of water. The advantage of using air resistance instead of air permeability to characterize a fabric is that in an assembly of a number of fabrics, the total air resistance is then the sum of the individual air resistances.
To obtain accurate results in the test, edge leakage around the specimen has to be prevented by using a guard ring or similar device (for example, efficient clamping). The pressure drop across the guard ring is measured by a separate pressure gauge. Air that is drawn through the guard ring does not pass through the flowmeter. The pressure drops across the guard ring and test area are equalised in order that no air can pass either way through the edge of the specimen. A guard ring of three times the size of the test area is considered sufficient.